04/07/2020

Generating Informative Conversational Response using Recurrent Knowledge-Interaction and Knowledge-Copy

Xiexiong Lin, Weiyu Jian, Jianshan He, Taifeng Wang, Wei Chu

Keywords: Generating Response, Knowledge-driven approaches, response steps, knowledge mechanism

Abstract: Knowledge-driven conversation approaches have achieved remarkable research attention recently. However, generating an informative response with multiple relevant knowledge without losing fluency and coherence is still one of the main challenges. To address this issue, this paper proposes a method that uses recurrent knowledge interaction among response decoding steps to incorporate appropriate knowledge. Furthermore, we introduce a knowledge copy mechanism using a knowledge-aware pointer network to copy words from external knowledge according to knowledge attention distribution. Our joint neural conversation model which integrates recurrent Knowledge-Interaction and knowledge Copy (KIC) performs well on generating informative responses. Experiments demonstrate that our model with fewer parameters yields significant improvements over competitive baselines on two datasets Wizard-of-Wikipedia(average Bleu +87%; abs.: 0.034) and DuConv(average Bleu +20%; abs.: 0.047)) with different knowledge formats (textual & structured) and different languages (English & Chinese).

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers