06/12/2021

BNS: Building Network Structures Dynamically for Continual Learning

Qi Qin, Wenpeng Hu, Han Peng, Dongyan Zhao, Bing Liu

Keywords: continual learning

Abstract: Continual learning (CL) of a sequence of tasks is often accompanied with the catastrophic forgetting(CF) problem. Existing research has achieved remarkable results in overcoming CF, especially for task continual learning. However, limited work has been done to achieve another important goal of CL,knowledge transfer.In this paper, we propose a technique (called BNS) to do both. The novelty of BNS is that it dynamically builds a network to learn each new task to overcome CF and to transfer knowledge across tasks at the same time. Experimental results show that when the tasks are different (with little shared knowledge), BNS can already outperform the state-of-the-art baselines. When the tasks are similar and have shared knowledge, BNS outperforms the baselines substantially by a large margin due to its knowledge transfer capability.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 16:31