25/07/2020

Copula guided neural topic modelling for short texts

Lihui Lin, Hongyu Jiang, Yanghui Rao

Keywords: short text modelling, Archimedean copulas, neural topic modelling, auto-encoding variational Bayes

Abstract: Extracting the topical information from documents is important for public opinion analysis, text classification, and information retrieval tasks. Compared with identifying a wide variety of topics from long documents, it is challenging to generate a concentrated topic distribution for each short message. Although this problem can be tackled by adjusting the hyper-parameters in traditional topic models such as Latent Dirichlet Allocation, it remains an open problem in neural topic modelling. In this paper, we focus on adapting the popular Auto-Encoding Variational Bayes based neural topic models to short texts, by exploring the Archimedean copulas to guide the estimated topic distributions derived from linear projected samples of re-parameterized posterior distributions. Experimental results show the superiority of our method when compared with existing neural topic models in terms of perplexity, topic coherence, and classification accuracy.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3397271.3401245#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGIR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers