12/07/2020

Anderson Acceleration of Proximal Gradient Methods

Vien Mai, Mikael Johansson

Keywords: Optimization - Convex

Abstract: Anderson acceleration is a well-established and simple technique for speeding up fixed-point computations with countless applications. This work introduces novel methods for adapting Anderson acceleration to (non-smooth and constrained) proximal gradient algorithms. Under some technical conditions, we extend the existing local convergence results of Anderson acceleration for smooth fixed-point mappings to the proposed scheme. We also prove analytically that it is not, in general, possible to guarantee global convergence of native Anderson acceleration. We therefore propose a simple scheme for stabilization that combines the global worst-case guarantees of proximal gradient methods with the local adaptation and practical speed-up of Anderson acceleration. We also provide the first applications of Anderson acceleration to non-Euclidean geometry.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers