06/12/2020

Conformal Symplectic and Relativistic Optimization

Guilherme Franca, Jeremias Sulam, Daniel Robinson, Rene Vidal

Keywords:

Abstract: Arguably, the two most popular accelerated or momentum-based optimization methods are Nesterov's accelerated gradient and Polyaks's heavy ball, both corresponding to different discretizations of a particular second order differential equation with a friction term. Such connections with continuous-time dynamical systems have been instrumental in demystifying acceleration phenomena in optimization. Here we study structure-preserving discretizations for a certain class of dissipative (conformal) Hamiltonian systems, allowing us to analyze the symplectic structure of both Nesterov and heavy ball, besides providing several new insights into these methods. Moreover, we propose a new algorithm based on a dissipative relativistic system that normalizes the momentum and may result in more stable/faster optimization. Importantly, such a method generalizes both Nesterov and heavy ball, each being recovered as distinct limiting cases, and has potential advantages at no additional cost.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers