12/07/2020

Is Local SGD Better than Minibatch SGD?

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan McMahan, Ohad Shamir, Nati Srebro

Keywords: Optimization - Large Scale, Parallel and Distributed

Abstract: We study local SGD (also known as parallel SGD and federated SGD), a natural and frequently used distributed optimization method. Its theoretical foundations are currently lacking and we highlight how all existing error guarantees in the convex setting are dominated by a simple baseline, minibatch SGD. (1) For quadratic objectives we prove that local SGD strictly dominates minibatch SGD and that accelerated local SGD is minmax optimal for quadratics; (2) For general convex objectives we provide the first guarantee that at least \emph{sometimes} improves over minibatch SGD, but our guarantee does not always improve over, nor even match, minibatch SGD; (3) We show that indeed local SGD does \emph{not} dominate minibatch SGD by presenting a lower bound on the performance of local SGD that is worse than the minibatch SGD guarantee.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers