14/06/2020

A Certifiably Globally Optimal Solution to Generalized Essential Matrix Estimation

Ji Zhao, Wanting Xu, Laurent Kneip

Keywords: generalized camera, multi-camera array, relative pose, generalized essential matrix, qcqp, sdr, convex optimization, certifiable global optimality, redundant constraints, non-minimal

Abstract: We present a convex optimization approach for generalized essential matrix (GEM) estimation. The six-point minimal solver for the GEM has poor numerical stability and applies only for a minimal number of points. Existing non-minimal solvers for GEM estimation rely on either local optimization or relinearization techniques, which impedes high accuracy in common scenarios. Our proposed non-minimal solver minimizes the sum of squared residuals by reformulating the problem as a quadratically constrained quadratic program. The globally optimal solution is thus obtained by a semidefinite relaxation. The algorithm retrieves certifiably globally optimal solutions to the original non-convex problem in polynomial time. We also provide the necessary and sufficient conditions to recover the optimal GEM from the relaxed problems. The improved performance is demonstrated over experiments on both synthetic and real multi-camera systems.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers