06/12/2021

Regulating algorithmic filtering on social media

Sarah Cen, Devavrat Shah

Keywords:

Abstract: By filtering the content that users see, social media platforms have the ability to influence users' perceptions and decisions, from their dining choices to their voting preferences. This influence has drawn scrutiny, with many calling for regulations on filtering algorithms, but designing and enforcing regulations remains challenging. In this work, we examine three questions. First, given a regulation, how would one design an audit to enforce it? Second, does the audit impose a performance cost on the platform? Third, how does the audit affect the content that the platform is incentivized to filter? In response, we propose a method such that, given a regulation, an auditor can test whether that regulation is met with only black-box access to the filtering algorithm. We then turn to the platform's perspective. The platform's goal is to maximize an objective function while meeting regulation. We find that there are conditions under which the regulation does not place a high performance cost on the platform and, notably, that content diversity can play a key role in aligning the interests of the platform and regulators.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers