14/09/2020

PROMO for Interpretable Personalized Social Emotion Mining

Jiasheng Zhang, Dongwon Lee

Keywords: personalized social emotion mining, ternary relationship data, probabilistic generative models

Abstract: Unearthing a set of users’ collective emotional reactions to news or posts in social media has many useful applications and business implications. For instance, when one reads a piece of news on Facebook with dominating “angry” reactions, or another with dominating “love” reactions, she may have a general sense on how social users react to the particular piece. However, such a collective view of emotion is unable to answer the subtle differences that may exist among users. To answer the question “which emotion who feels about what” better, therefore, we formulate the Personalized Social Emotion Mining (PSEM) problem. Solving the PSEM problem is non-trivial in that: (1) the emotional reaction data is in the form of ternary relationship among user-emotion-post, and (2) the results need to be interpretable. Addressing the two challenges, in this paper, we develop an expressive probabilistic generative model, PROMO, and demonstrate its validity through empirical studies.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ECML PKDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers