06/12/2021

A Gaussian Process-Bayesian Bernoulli Mixture Model for Multi-Label Active Learning

Weishi Shi, Dayou Yu, Qi Yu

Keywords: machine learning, generative model, kernel methods, active learning

Abstract: Multi-label classification (MLC) allows complex dependencies among labels, making it more suitable to model many real-world problems. However, data annotation for training MLC models becomes much more labor-intensive due to the correlated (hence non-exclusive) labels and a potential large and sparse label space. We propose to conduct multi-label active learning (ML-AL) through a novel integrated Gaussian Process-Bayesian Bernoulli Mixture model (GP-B$^2$M) to accurately quantify a data sample's overall contribution to a correlated label space and choose the most informative samples for cost-effective annotation. In particular, the B$^2$M encodes label correlations using a Bayesian Bernoulli mixture of label clusters, where each mixture component corresponds to a global pattern of label correlations. To tackle highly sparse labels under AL, the B$^2$M is further integrated with a predictive GP to connect data features as an effective inductive bias and achieve a feature-component-label mapping. The GP predicts coefficients of mixture components that help to recover the final set of labels of a data sample. A novel auxiliary variable based variational inference algorithm is developed to tackle the non-conjugacy introduced along with the mapping process for efficient end-to-end posterior inference. The model also outputs a predictive distribution that provides both the label prediction and their correlations in the form of a label covariance matrix. A principled sampling function is designed accordingly to naturally capture both the feature uncertainty (through GP) and label covariance (through B$^2$M) for effective data sampling. Experiments on real-world multi-label datasets demonstrate the state-of-the-art AL performance of the proposed GP-B$^2$M model.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers