19/08/2021

Correlation-Guided Representation for Multi-Label Text Classification

Qian-Wen Zhang, Ximing Zhang, Zhao Yan, Ruifang Liu, Yunbo Cao, Min-Ling Zhang

Keywords: Machine Learning, Multi-instance; Multi-label; Multi-view learning, Classification, Text Classification

Abstract: Multi-label text classification is an essential task in natural language processing. Existing multi-label classification models generally consider labels as categorical variables and ignore the exploitation of label semantics. In this paper, we view the task as a correlation-guided text representation problem: an attention-based two-step framework is proposed to integrate text information and label semantics by jointly learning words and labels in the same space. In this way, we aim to capture high-order label-label correlations as well as context-label correlations. Specifically, the proposed approach works by learning token-level representations of words and labels globally through a multi-layer Transformer and constructing an attention vector through word-label correlation matrix to generate the text representation. It ensures that relevant words receive higher weights than irrelevant words and thus directly optimizes the classification performance. Extensive experiments over benchmark multi-label datasets clearly validate the effectiveness of the proposed approach, and further analysis demonstrates that it is competitive in both predicting low-frequency labels and convergence speed.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers