19/08/2021

Generating Senses and RoLes: An End-to-End Model for Dependency- and Span-based Semantic Role Labeling

Rexhina Blloshmi, Simone Conia, Rocco Tripodi, Roberto Navigli

Keywords: Natural Language Processing, Natural Language Semantics, Natural Language Generation, Natural Language Processing

Abstract: Despite the recent great success of the sequence-to-sequence paradigm in Natural Language Processing, the majority of current studies in Semantic Role Labeling (SRL) still frame the problem as a sequence labeling task. In this paper we go against the flow and propose GSRL (Generating Senses and RoLes), the first sequence-to-sequence model for end-to-end SRL. Our approach benefits from recently-proposed decoder-side pretraining techniques to generate both sense and role labels for all the predicates in an input sentence at once, in an end-to-end fashion. Evaluated on standard gold benchmarks, GSRL achieves state-of-the-art results in both dependency- and span-based English SRL, proving empirically that our simple generation-based model can learn to produce complex predicate-argument structures. Finally, we propose a framework for evaluating the robustness of an SRL model in a variety of synthetic low-resource scenarios which can aid human annotators in the creation of better, more diverse, and more challenging gold datasets. We release GSRL at github.com/SapienzaNLP/gsrl.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers