14/06/2020

Probability Weighted Compact Feature for Domain Adaptive Retrieval

Fuxiang Huang, Lei Zhang, Yang Yang, Xichuan Zhou

Keywords: domain adaptive retrieval, bayesian formulation, learning to hash, transfer learning, focal-triplet loss, histogram feature of neighbors

Abstract: Domain adaptive image retrieval includes single-domain retrieval and cross-domain retrieval. Most of the existing image retrieval methods only focus on single-domain retrieval, which assumes that the distributions of retrieval databases and queries are similar. However, in practical application, the discrepancies between retrieval databases often taken in ideal illumination/pose/background/camera conditions and queries usually obtained in uncontrolled conditions are very large. In this paper, considering the practical application, we focus on challenging cross-domain retrieval. To address the problem, we propose an effective method named Probability Weighted Compact Feature Learning (PWCF), which provides inter-domain correlation guidance to promote cross-domain retrieval accuracy and learns a series of compact binary codes to improve the retrieval speed. First, we derive our loss function through the Maximum A Posteriori Estimation (MAP): Bayesian Perspective (BP) induced focal-triplet loss, BP induced quantization loss and BP induced classification loss. Second, we propose a common manifold structure between domains to explore the potential correlation across domains. Considering the original feature representation is biased due to the inter-domain discrepancy, the manifold structure is difficult to be constructed. Therefore, we propose a new feature named Histogram Feature of Neighbors (HFON) from the sample statistics perspective. Extensive experiments on various benchmark databases validate that our method outperforms many state-of-the-art image retrieval methods for domain adaptive image retrieval. The source code is available at {https://github.com/fuxianghuang1/PWCF}.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers