06/12/2021

Collapsed Variational Bounds for Bayesian Neural Networks

Marcin Tomczak, Siddharth Swaroop, Andrew Foong, Richard Turner

Keywords: deep learning, optimization, generative model

Abstract: Recent interest in learning large variational Bayesian Neural Networks (BNNs) has been partly hampered by poor predictive performance caused by underfitting, and their performance is known to be very sensitive to the prior over weights. Current practice often fixes the prior parameters to standard values or tunes them using heuristics or cross-validation. In this paper, we treat prior parameters in a distributional way by extending the model and collapsing the variational bound with respect to their posteriors. This leads to novel and tighter Evidence Lower Bounds (ELBOs) for performing variational inference (VI) in BNNs. Our experiments show that the new bounds significantly improve the performance of Gaussian mean-field VI applied to BNNs on a variety of data sets, demonstrating that mean-field VI works well even in deep models. We also find that the tighter ELBOs can be good optimization targets for learning the hyperparameters of hierarchical priors.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers