12/07/2020

Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors

Mike Dusenberry, Ghassen Jerfel, Yeming Wen, Yian Ma, Jasper Snoek, Katherine Heller, Balaji Lakshminarayanan, Dustin Tran

Keywords: Deep Learning - General

Abstract: Bayesian neural networks (BNNs) demonstrate promising success in improving the robustness and uncertainty quantification of modern neural networks. However, they generally struggle with underfitting at scale and parameter efficiency. On the other hand, deep ensembles have emerged as an alternative for uncertainty quantification that, while outperforming BNNs on certain problems, also suffers from efficiency issues. It remains unclear how to combine the strengths of these two approaches and remediate their common issues. To tackle this challenge, we propose a rank-1 parameterization of BNNs, where each weight matrix involves only a distribution on a rank-1 subspace. We also revisit the use of mixture approximate posteriors to capture multiple modes where unlike typical mixtures, this approach admits a significantly smaller memory increase (e.g., only a 0.4\% increase for a ResNet-50 mixture of size 10). We perform a systematic empirical study on the choices of prior, variational posterior, and methods to improve training. For ResNet-50 on ImageNet and Wide ResNet 28-10 on CIFAR-10/100, rank-1 BNNs demonstrate improved performance across log-likelihood, accuracy, and calibration on the test set and out-of-distribution variants.

 0
 0
 0
 1
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers