02/02/2021

Vector Quantized Bayesian Neural Network Inference for Data Streams

Namuk Park, Taekyu Lee, Songkuk Kim

Keywords:

Abstract: Bayesian neural networks (BNN) can estimate the uncertainty in predictions, as opposed to non-Bayesian neural networks (NNs). However, BNNs have been far less widely used than non-Bayesian NNs in practice since they need iterative NN executions to predict a result for one data, and it gives rise to prohibitive computational cost. This computational burden is a critical problem when processing data streams with low-latency. To address this problem, we propose a novel model VQ-BNN, which approximates BNN inference for data streams. In order to reduce the computational burden, VQ-BNN inference predicts NN only once and compensates the result with previously memorized predictions. To be specific, VQ-BNN inference for data streams is given by temporal exponential smoothing of recent predictions. The computational cost of this model is almost the same as that of non-Bayesian NNs. Experiments including semantic segmentation on real-world data show that this model performs significantly faster than BNNs while estimating predictive results comparable to or superior to the results of BNNs.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948225
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers