26/04/2020

Compression based bound for non-compressed network: unified generalization error analysis of large compressible deep neural network

Taiji Suzuki, Hiroshi Abe, Tomoaki Nishimura

Keywords: Generalization error, compression based bound, local Rademacher complexity

Abstract: One of the biggest issues in deep learning theory is the generalization ability of networks with huge model size. The classical learning theory suggests that overparameterized models cause overfitting. However, practically used large deep models avoid overfitting, which is not well explained by the classical approaches. To resolve this issue, several attempts have been made. Among them, the compression based bound is one of the promising approaches. However, the compression based bound can be applied only to a compressed network, and it is not applicable to the non-compressed original network. In this paper, we give a unified frame-work that can convert compression based bounds to those for non-compressed original networks. The bound gives even better rate than the one for the compressed network by improving the bias term. By establishing the unified frame-work, we can obtain a data dependent generalization error bound which gives a tighter evaluation than the data independent ones.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers