06/12/2021

Deconvolutional Networks on Graph Data

Jia Li, Jiajin Li, Yang Liu, Jianwei Yu, Yueting Li, Hong Cheng

Keywords: graph learning

Abstract: In this paper, we consider an inverse problem in graph learning domain -- "given the graph representations smoothed by Graph Convolutional Network (GCN), how can we reconstruct the input graph signal?" We propose Graph Deconvolutional Network (GDN) and motivate the design of GDN via a combination of inverse filters in spectral domain and de-noising layers in wavelet domain, as the inverse operation results in a high frequency amplifier and may amplify the noise. We demonstrate the effectiveness of the proposed method on several tasks including graph feature imputation and graph structure generation.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers