19/08/2021

Self-boosting for Feature Distillation

Yulong Pei, Yanyun Qu, Junping Zhang

Keywords: Computer Vision, 2D and 3D Computer Vision, Recognition

Abstract: Knowledge distillation is a simple but effective method for model compression, which obtains a better-performing small network (Student) by learning from a well-trained large network (Teacher). However, when the difference in the model sizes of Student and Teacher is large, the gap in capacity leads to poor performance of Student. Existing methods focus on seeking simplified or more effective knowledge from Teacher to narrow the Teacher-Student gap, while we address this problem by Student's self-boosting. Specifically, we propose a novel distillation method named Self-boosting Feature Distillation (SFD), which eases the Teacher-Student gap by feature integration and self-distillation of Student. Three different modules are designed for feature integration to enhance the discriminability of Student's feature, which leads to improving the order of convergence in theory. Moreover, an easy-to-operate self-distillation strategy is put forward to stabilize the training process and promote the performance of Student, without additional forward propagation or memory consumption. Extensive experiments on multiple benchmarks and networks show that our method is significantly superior to existing methods.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers