19/08/2021

Keyword-Based Knowledge Graph Exploration Based on Quadratic Group Steiner Trees

Yuxuan Shi, Gong Cheng, Trung-Kien Tran, Jie Tang, Evgeny Kharlamov

Keywords: Data Mining, Mining Graphs, Semi Structured Data, Complex Data, Information Retrieval, Semantic Web

Abstract: Exploring complex structured knowledge graphs (KGs) is challenging for non-experts as it requires knowledge of query languages and the underlying structure of the KGs. Keyword-based exploration is a convenient paradigm, and computing a group Steiner tree (GST) as an answer is a popular implementation. Recent studies suggested improving the cohesiveness of an answer where entities have small semantic distances from each other. However, how to efficiently compute such an answer is open. In this paper, to model cohesiveness in a generalized way, the quadratic group Steiner tree problem (QGSTP) is formulated where the cost function extends GST with quadratic terms representing semantic distances. For QGSTP we design a branch-and-bound best-first (B3F) algorithm where we exploit combinatorial methods to estimate lower bounds for costs. This exact algorithm shows practical performance on medium-sized KGs.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 4:52