19/08/2021

Decomposition-Guided Reductions for Argumentation and Treewidth

Johannes Fichte, Markus Hecher, Yasir Mahmood, Arne Meier

Keywords: Knowledge Representation and Reasoning, Computational Complexity of Reasoning, Computational Models of Argument, Constraint Satisfaction

Abstract: Argumentation is a widely applied framework for modeling and evaluating arguments and its reasoning with various applications. Popular frameworks are abstract argumentation (Dung’s framework) or logic-based argumentation (Besnard-Hunter’s framework). Their computational complexity has been studied quite in-depth. Incorporating treewidth into the complexity analysis is particularly interesting, as solvers oftentimes employ SAT-based solvers, which can solve instances of low treewidth fast. In this paper, we address whether one can design reductions from argumentation problems to SAT-problems while linearly preserving the treewidth, which results in decomposition-guided (DG) reductions. It turns out that the linear treewidth overhead caused by our DG reductions, cannot be significantly improved under reasonable assumptions. Finally, we consider logic-based argumentation and establish new upper bounds using DG reductions and lower bounds.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers