19/08/2021

Greybox Algorithm Configuration

Marie Anastacio

Keywords: Heuristic Search and Game Playing, Combinatorial Search and Optimisation, Heuristic Search and Machine Learning

Abstract: The performance of state-of-the-art algorithms is highly dependent on their parameter values, and choosing the right configuration can make the difference between solving a problem in a few minutes or hours. Automated algorithm configurators have shown their efficiency on a wide range of applications. However, they still encounter limitations when confronted to a large number of parameters to tune or long algorithm running time. We believe that there is untapped knowledge that can be gathered from the elements of the configuration problem, such as the default value in the configuration space, the source code of the algorithm, and the distribution of the problem instances at hand. We aim at utilising this knowledge to improve algorithm configurators.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers