22/11/2021

Local-Global Associative Frame Assemble in Video Re-ID

Qilei Li, Jiabo Huang, Shaogang Gong

Keywords: video Re-ID, local aligned quality, global appearance correlations, associative frame assemble

Abstract: Noisy and unrepresentative frames in automatically generated object bounding boxes from video sequences cause significant challenges in learning discriminative representations in video re-identification (Re-ID). Most existing methods tackle this problem by assessing the importance of video frames according to either their local part alignments or global appearance correlations separately. However, given the diverse and unknown sources of noise which usually co-exist in captured video data, existing methods have not been effective satisfactorily. In this work, we explore jointly both local alignments and global correlations with further consideration of their mutual promotion/reinforcement so to better assemble complementary discriminative Re-ID information within all the relevant frames in video tracklets. Specifically, we concurrently optimise a local aligned quality (LAQ) module that distinguishes the quality of each frame based on local alignments, and a global correlated quality (GCQ) module that estimates global appearance correlations. With the help of a local-assembled global appearance prototype, we associate LAQ and GCQ to exploit their mutual complement. Extensive experiments demonstrate the superiority of the proposed model against state-of-the-art methods on four video Re-ID benchmarks, including MARS, Duke-Video, Duke-SI, and iLIDS-VID.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers