22/11/2021

Everybody Is Unique: Towards Unbiased Human Mesh Recovery

Ren Li, Srikrishna Karanam, Meng Zheng, Terrence Chen, Ziyan Wu

Keywords: human mesh recovery, pose and shape, smpl, optimization

Abstract: We consider the problem of obese human mesh recovery, i.e., fitting a parametric human mesh to images of obese people. Despite obese person mesh fitting being an important problem with numerous applications (e.g., healthcare), much recent progress in mesh recovery has been restricted to images of non-obese people. In this work, we identify this crucial gap in the current literature by presenting and discussing limitations of existing algorithms. Next, we present a simple baseline to address this problem that is scalable and can be easily used in conjunction with existing algorithms to improve their performance. Finally, we present a generalized human mesh optimization algorithm that substantially improves the performance of existing methods on both obese person images as well as community-standard benchmark datasets. A key innovation of this technique is that it does not rely on supervision from expensive-to-create mesh parameters. Instead, starting from widely and cheaply available 2D annotations, our method automatically generates mesh parameters that can in turn be used to re-train and fine-tune any existing mesh estimation algorithm. This way, we show our method acts as a drop-in to improve the performance of a wide variety of contemporary mesh estimation methods. We conduct extensive experiments on multiple datasets comprising both standard and obese person images and demonstrate the efficacy of our proposed techniques.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers