22/11/2021

HR-RCNN: Hierarchical Relational Reasoning for Object Detection

Hao Chen, Abhinav Shrivastava

Keywords: object detection, visual reasoning, attention, hierarchical reasoning

Abstract: Incorporating relational reasoning in neural networks for object recognition remains an open problem. Although many attempts have been made for relational reasoning, they generally only consider a single type of relationship. For example, pixel relations through self-attention (e.g., non-local networks), scale relations through feature fusion (e.g., feature pyramid networks), or object relations through graph convolutions (e.g., reasoning-RCNN). Little attention has been given to more generalized frameworks that can reason across these relationships. In this paper, we propose a hierarchical relational reasoning framework (HR-RCNN) for object detection, which utilizes a novel graph attention module (GAM). This GAM is a concise module that enables reasoning across heterogeneous nodes by operating on the graph’s edges directly. Leveraging heterogeneous relationships, our HR-RCNN shows great improvement on COCO dataset, for both object detection and instance segmentation.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers