08/12/2020

AprilE: Attention with Pseudo Residual Connection for Knowledge Graph Embedding

Yuzhang Liu, Peng Wang, Yingtai Li, Yizhan Shao, Zhongkai Xu

Keywords:

Abstract: Knowledge graph embedding maps entities and relations into low-dimensional vector space. However, it is still challenging for many existing methods to model diverse relational patterns, especially symmetric and antisymmetric relations. To address this issue, we propose a novel model, AprilE, which employs triple-level self-attention and pseudo residual connection to model relational patterns. The triple-level self-attention treats head entity, relation, and tail entity as a sequence and captures the dependency within a triple. At the same time the pseudo residual connection retains primitive semantic features. Furthermore, to deal with symmetric and antisymmetric relations, two schemas of score function are designed via a position-adaptive mechanism. Experimental results on public datasets demonstrate that our model can produce expressive knowledge embedding and significantly outperforms most of the state-of-the-art works.

The video of this talk cannot be embedded. You can watch it here:
https://underline.io/lecture/6157-aprile-attention-with-pseudo-residual-connection-for-knowledge-graph-embedding
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLING 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers