22/11/2021

CAFENet: Class-Agnostic Few-Shot Edge Detection Network

YoungHyun Park, Jun Seo, Jaekyun Moon

Keywords: few-shot edge detection, few-shot learning, edge detection, meta learning

Abstract: We tackle a novel few-shot learning challenge, few-shot semantic edge detection, aiming to localize boundaries of novel categories using only a few labeled samples. Reliable boundary information has been shown to boost the performance of semantic segmentation and localization, while also playing a key role in its own right in object reconstruction, image generation and medical imaging. However, existing semantic edge detection techniques require a large amount of labeled data to train a model. To overcome this limitation, we present Class-Agnostic Few-shot Edge detection Network (CAFENet) based on a meta-learning strategy. CAFENet employs a semantic segmentation module in small-scale to compensate for the lack of semantic information in edge labels. To effectively fuse the semantic information and low-level cues, CAFENet also utilizes an attention module which dynamically generates multi-scale attention map, as well as a novel regularization method that splits high-dimensional features into several low-dimensional features and conducts multiple metric learning. Since there are no existing datasets for few-shot semantic edge detection, we construct two new datasets, FSE-1000 and SBD-5i, and evaluate the performance of the proposed CAFENet on them. Extensive simulation results confirm that CAFENet achieves better performance compared to the baseline methods using fine-tuning or few-shot segmentation.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers