22/09/2020

Closed-form models for collaborative filtering with side-information

Olivier Jeunen, Jan Van Balen, Bart Goethals

Keywords: side-information, Ridge regression, item metadata

Abstract: Recent work has shown that, despite their simplicity, item-based models optimised through ridge regression can attain highly competitive results on collaborative filtering tasks. As these models are analytically computable and thus forgo the need for often expensive iterative optimisation procedures, they are an attractive choice for practitioners. We study the applicability of such closed-form models to implicit-feedback collaborative filtering when additional side-information or metadata about items is available. Two complementary extensions to the easer paradigm are proposed, based on collective and additive models. Through an extensive empirical analysis on several large-scale datasets, we show that our methods can effectively exploit side-information whilst retaining a closed-form solution, and improve upon the state-of-the-art without increasing the computational complexity of the original easer approach. Additionally, empirical results demonstrate that the use of side-information leads to more “long tail” items being recommended, benefiting the recommendations’ coverage of the item catalogue.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at RECSYS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers