02/02/2021

Noninvasive Self-attention for Side Information Fusion in Sequential Recommendation

Chang Liu, Xiaoguang Li, Guohao Cai, Zhenhua Dong, Hong Zhu, Lifeng Shang

Keywords:

Abstract: Sequential recommender systems aim to model users’ evolving interests from their historical behaviors, and hence make customized time-relevant recommendations. Compared with traditional models, deep learning approaches such as CNN and RNN have achieved remarkable advancements in recommendation tasks. Recently, the BERT framework also emerges as a promising method, benefited from its self-attention mechanism in processing sequential data. However, one limitation of the original BERT framework is that it only considers one input source of the natural language tokens. It is still an open question to leverage various types of information under the BERT framework. Nonetheless, it is intuitively appealing to utilize other side information, such as item category or tag, for more comprehensive depictions and better recommendations. In our pilot experiments, we found naive approaches, which directly fuse types of side information into the item embeddings, usually bring very little or even negative effects. Therefore, in this paper, we propose the NOn-inVasive self-Attention mechanism (NOVA) to leverage side information effectively under the BERT framework. NOVA makes use of side information to generate better attention distribution, rather than directly altering the item embeddings, which may cause information overwhelming. We validate the NOVA-BERT model on both public and commercial datasets, and our method can stably outperform the state-of-the-art models with negligible computational overheads.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948586
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers