14/06/2020

Adaptive Hierarchical Down-Sampling for Point Cloud Classification

Ehsan Nezhadarya, Ehsan Taghavi, Ryan Razani, Bingbing Liu, Jun Luo

Keywords: critical points layer, pooling layer, graph neural networks, point cloud, down-sampling

Abstract: Deterministic down-sampling of an unordered point cloud in a deep neural network has not been rigorously studied so far. Existing methods down-sample the points regardless of their importance for the network output and often address down-sampling the raw point cloud before processing. As a result, some important points in the point cloud may be removed, while less valuable points may be passed to next layers. In contrast, the proposed adaptive down-sampling method samples the points by taking into account the importance of each point, which varies according to application, task and training data. In this paper, we propose a novel deterministic, adaptive, permutation-invariant down-sampling layer, called Critical Points Layer (CPL), which learns to reduce the number of points in an unordered point cloud while retaining the important (critical) ones. Unlike most graph-based point cloud down-sampling methods that use k-NN to find the neighboring points, CPL is a global down-sampling method, rendering it computationally very efficient. The proposed layer can be used along with a graph-based point cloud convolution layer to form a convolutional neural network, dubbed CP-Net in this paper. We introduce a CP-Net for 3D object classification that achieves high accuracy for the ModelNet 40 dataset among point cloud-based methods, which validates the effectiveness of the CPL.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers