18/07/2021

Generalization Bounds in the Presence of Outliers: a Median-of-Means Study

Pierre Laforgue, Guillaume Staerman, Stephan Clémençon

Keywords: Theory, Statistical Learning Theory

Abstract: In contrast to the empirical mean, the Median-of-Means (MoM) is an estimator of the mean θ of a square integrable r.v. Z, around which accurate nonasymptotic confidence bounds can be built, even when Z does not exhibit a sub-Gaussian tail behavior. Thanks to the high confidence it achieves on heavy-tailed data, MoM has found various applications in machine learning, where it is used to design training procedures that are not sensitive to atypical observations. More recently, a new line of work is now trying to characterize and leverage MoM’s ability to deal with corrupted data. In this context, the present work proposes a general study of MoM’s concentration properties under the contamination regime, that provides a clear understanding on the impact of the outlier proportion and the number of blocks chosen. The analysis is extended to (multisample) U-statistics, i.e. averages over tuples of observations, that raise additional challenges due to the dependence induced. Finally, we show that the latter bounds can be used in a straightforward fashion to derive generalization guarantees for pairwise learning in a contaminated setting, and propose an algorithm to compute provably reliable decision functions.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers