06/12/2020

Robust compressed sensing using generative models

Ajil Jalal, Liu Liu, Alex Dimakis, Constantine Caramanis

Keywords: Neuroscience and Cognitive Science -> Neuroscience, Neuroscience and Cognitive Science -> Neural Coding

Abstract: We consider estimating a high dimensional signal in $\R^n$ using a sublinear number of linear measurements. In analogy to classical compressed sensing, here we assume a generative model as a prior, that is, we assume the signal is represented by a deep generative model $G: \R^k \rightarrow \R^n$. Classical recovery approaches such as empirical risk minimization (ERM) are guaranteed to succeed when the measurement matrix is sub-Gaussian. However, when the measurement matrix and measurements are heavy tailed or have outliers, recovery may fail dramatically. In this paper we propose an algorithm inspired by the Median-of-Means (MOM). Our algorithm guarantees recovery for heavy tailed data, even in the presence of outliers. Theoretically, our results show our novel MOM-based algorithm enjoys the same sample complexity guarantees as ERM under sub-Gaussian assumptions. Our experiments validate both aspects of our claims: other algorithms are indeed fragile and fail under heavy tailed and/or corrupted data, while our approach exhibits the predicted robustness.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers