18/07/2021

SPADE: A Spectral Method for Black-Box Adversarial Robustness Evaluation

Wuxinlin Cheng, Chenhui Deng, Zhiqiang Zhao, Yaohui Cai, Zhiru Zhang, Zhuo Feng

Keywords: Deep Learning, Visualization or Exposition Techniques for Deep Networks, Algorithms, Image Segmentation; Applications, Computer Vision; Applications, Image Segmentation; Applications, Visual S, Algorithms, Adversarial Examples

Abstract: A black-box spectral method is introduced for evaluating the adversarial robustness of a given machine learning (ML) model. Our approach, named SPADE, exploits bijective distance mapping between the input/output graphs constructed for approximating the manifolds corresponding to the input/output data. By leveraging the generalized Courant-Fischer theorem, we propose a SPADE score for evaluating the adversarial robustness of a given model, which is proved to be an upper bound of the best Lipschitz constant under the manifold setting. To reveal the most non-robust data samples highly vulnerable to adversarial attacks, we develop a spectral graph embedding procedure leveraging dominant generalized eigenvectors. This embedding step allows assigning each data point a robustness score that can be further harnessed for more effective adversarial training of ML models. Our experiments show promising empirical results for neural networks trained with the MNIST and CIFAR-10 data sets.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers