02/02/2021

Mercer Features for Efficient Combinatorial Bayesian Optimization

Aryan Deshwal, Syrine Belakaria, Janardhan Rao Doppa

Keywords:

Abstract: Bayesian optimization (BO) is an efficient framework for solving black-box optimization problems with expensive function evaluations. This paper addresses the BO problem setting for combinatorial spaces (e.g., sequences and graphs) that occurs naturally in science and engineering applications. A prototypical example is molecular optimization guided by expensive experiments. The key challenge is to balance the complexity of statistical models and tractability of search to select combinatorial structures for evaluation. In this paper, we propose an efficient approach referred as Mercer Features for Combinatorial Bayesian Optimization (MerCBO). The key idea behind MerCBO is to provide explicit feature maps for diffusion kernels over discrete objects by exploiting the structure of their combinatorial graph representation. These Mercer features combined with Thompson sampling as the acquisition function allows us to employ efficient solvers for finding the next structure for evaluation. Experimental evaluation on diverse real-world benchmarks demonstrates that MerCBO performs similarly or better than prior methods.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948644
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers