04/08/2021

A Dimension-free Computational Upper-bound for Smooth Optimal Transport Estimation

Adrien Vacher, Boris Muzellec, Alessandro Rudi, Francis Bach, Francois-Xavier Vialard

Keywords:

Abstract: It is well-known that plug-in statistical estimation of optimal transport suffers from the curse of dimensionality. Despite recent efforts to improve the rate of estimation with the smoothness of the problem, the computational complexity of these recently proposed methods still degrade exponentially with the dimension. In this paper, thanks to an infinite-dimensional sum-of-squares representation, we derive a statistical estimator of smooth optimal transport which achieves a precision $\varepsilon$ from $\tilde{O}(\varepsilon^{-2})$ independent and identically distributed samples from the distributions, for a computational cost of $\tilde{O}(\varepsilon^{-4})$ when the smoothness increases, hence yielding dimension-free statistical \emph{and} computational rates, with potentially exponentially dimension-dependent constants.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers