06/12/2021

Gradient-based Hyperparameter Optimization Over Long Horizons

Paul Micaelli, Amos Storkey

Keywords: optimization, meta learning

Abstract: Gradient-based hyperparameter optimization has earned a widespread popularity in the context of few-shot meta-learning, but remains broadly impractical for tasks with long horizons (many gradient steps), due to memory scaling and gradient degradation issues. A common workaround is to learn hyperparameters online, but this introduces greediness which comes with a significant performance drop. We propose forward-mode differentiation with sharing (FDS), a simple and efficient algorithm which tackles memory scaling issues with forward-mode differentiation, and gradient degradation issues by sharing hyperparameters that are contiguous in time. We provide theoretical guarantees about the noise reduction properties of our algorithm, and demonstrate its efficiency empirically by differentiating through $\sim 10^4$ gradient steps of unrolled optimization. We consider large hyperparameter search ranges on CIFAR-10 where we significantly outperform greedy gradient-based alternatives, while achieving $\times 20$ speedups compared to the state-of-the-art black-box methods.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers