04/08/2021

Optimizing Optimizers: Regret-optimal gradient descent algorithms

Philippe Casgrain, Anastasis Kratsios

Keywords:

Abstract: This paper treats the task of designing optimization algorithms as an optimal control problem. Using regret as a metric for an algorithm's performance, we study the existence, uniqueness and consistency of regret-optimal algorithms. By providing first-order optimality conditions for the control problem, we show that regret-optimal algorithms must satisfy a specific structure in their dynamics which we show is equivalent to performing \emph{dual-preconditioned gradient descent} on the value function generated by its regret. Using these optimal dynamics, we provide bounds on their rates of convergence to solutions of convex optimization problems. Though closed-form optimal dynamics cannot be obtained in general, we present fast numerical methods for approximating them, generating optimization algorithms which directly optimize their long-term regret. These are benchmarked against commonly used optimization algorithms to demonstrate their effectiveness.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 3:06