02/02/2021

Regret Bounds for Batched Bandits

Hossein Esfandiari, Amin Karbasi, Abbas Mehrabian, Vahab Mirrokni

Keywords:

Abstract: We present simple algorithms for batched stochastic multi-armed bandit and batched stochastic linear bandit problems. We prove bounds for their expected regrets that improve and extend the best known regret bounds of Gao, Han, Ren, and Zhou (NeurIPS 2019), for any number of batches. In particular, our algorithms in both settings achieve the optimal expected regrets by using only a logarithmic number of batches. We also study the batched adversarial multi-armed bandit problem for the first time and provide the optimal regret, up to logarithmic factors, of any algorithm with predetermined batch sizes.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38947794
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers