04/08/2021

Asymptotically Optimal Information-Directed Sampling

Johannes Kirschner, Tor Lattimore, Claire Vernade, Csaba Szepesvari

Keywords:

Abstract: We introduce a simple and efficient algorithm for stochastic linear bandits with finitely many actions that is asymptotically optimal and (nearly) worst-case optimal in finite time. The approach is based on the frequentist information-directed sampling (IDS) framework, with a surrogate for the information gain that is informed by the optimization problem that defines the asymptotic lower bound. Our analysis sheds light on how IDS balances the trade-off between regret and information and uncovers a surprising connection between the recently proposed primal-dual methods and the IDS algorithm. We demonstrate empirically that IDS is competitive with UCB in finite-time, and can be significantly better in the asymptotic regime.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers