18/07/2021

Beyond $log^2(T)$ regret for decentralized bandits in matching markets

Soumya Basu, Karthik Abinav Sankararaman, Abishek Sankararaman

Keywords: Reinforcement Learning and Planning, Bandits

Abstract: We design decentralized algorithms for regret minimization in the two sided matching market with one-sided bandit feedback that significantly improves upon the prior works (Liu et al.\,2020a, Sankararaman et al.\,2020, Liu et al.\,2020b). First, for general markets, for any $\varepsilon > 0$, we design an algorithm that achieves a $O(\log^{1+\varepsilon}(T))$ regret to the agent-optimal stable matching, with unknown time horizon $T$, improving upon the $O(\log^{2}(T))$ regret achieved in (Liu et al.\,2020b). Second, we provide the optimal $\Theta(\log(T))$ agent-optimal regret for markets satisfying {\em uniqueness consistency} -- markets where leaving participants don't alter the original stable matching. Previously, $\Theta(\log(T))$ regret was achievable (Sankararaman et al.\,2020, Liu et al.\,2020b) in the much restricted {\em serial dictatorship} setting, when all arms have the same preference over the agents. We propose a phase based algorithm, where in each phase, besides deleting the globally communicated dominated arms the agents locally delete arms with which they collide often. This \emph{local deletion} is pivotal in breaking deadlocks arising from rank heterogeneity of agents across arms. We further demonstrate superiority of our algorithm over existing works through simulations.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers