09/07/2020

Efficient improper learning for online logistic regression

Pierre Gaillard, Rémi Jézéquel, Alessandro Rudi

Keywords: Online learning, Classification, Convex optimization

Abstract: We consider the setting of online logistic regression and consider the regret with respect to the $\ell_2$-ball of radius $B$. It is known (see Hazan et al. (2014)) that any proper algorithm which has logarithmic regret in the number of samples (denoted $n$) necessarily suffers an exponential multiplicative constant in $B$. In this work, we design an efficient improper algorithm that avoids this exponential constant while preserving a logarithmic regret. \n\nIndeed, Foster et al. (2018) showed that the lower bound does not apply to improper algorithms and proposed a strategy based on exponential weights with prohibitive computational complexity. Our new algorithm based on regularized empirical risk minimization with surrogate losses satisfies a regret scaling as $O(B\log(n) + B^2)$ with a per-round time-complexity of order $O(d^2)$.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers