13/04/2021

Regret-optimal filtering

Oron Sabag, Babak Hassibi

Keywords:

Abstract: We consider the problem of filtering in linear state-space models (e.g., the Kalman filter setting) through the lens of regret optimization. Specifically, we study the problem of causally estimating a desired signal, generated by a linear state-space model driven by process noise, based on noisy observations of a related observation process. We define a novel regret criterion for estimator design as the difference of the estimation error energies between a clairvoyant estimator that has access to all future observations (a so-called smoother) and a causal one that only has access to current and past observations. The regret-optimal estimator is the causal estimator that minimizes the worst-case regret across all bounded-energy noise sequences. We provide a solution for the regret filtering problem at two levels. First, an horizon-independent solution at the operator level is obtained by reducing the regret to the well-known Nehari problem. Secondly, our main result for state-space models is an explicit estimator that achieves the optimal regret. The regret-optimal estimator is represented as a finite-dimensional state-space whose parameters can be computed by solving three Riccati equations and a single Lyapunov equation. We demonstrate the applicability and efficacy of the estimator in a variety of problems and observe that the estimator has average and worst-case performances that are simultaneously close to their optimal values.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers