02/02/2021

Smooth Convex Optimization Using Sub-Zeroth-Order Oracles

Mustafa O. Karabag, Cyrus Neary, Ufuk Topcu

Keywords:

Abstract: We consider the problem of minimizing a smooth, Lipschitz, convex function over a compact, convex set using sub-zeroth-order oracles: an oracle that outputs the sign of the directional derivative for a given point and a given direction, an oracle that compares the function values for a given pair of points, and an oracle that outputs a noisy function value for a given point. We show that the sample complexity of optimization using these oracles is polynomial in the relevant parameters. The optimization algorithm that we provide for the comparator oracle is the first algorithm with a known rate of convergence that is polynomial in the number of dimensions. We also give an algorithm for the noisy-value oracle that incurs sublinear regret in the number of queries and polynomial regret in the number of dimensions.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949056
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers