07/06/2021

CoVaxxy: A Collection of English-Language Twitter Posts About COVID-19 Vaccines

Matthew R. Deverna, Francesco Pierri, Bao Tran Truong, John Bollenbacher, David Axelrod, Niklas Loynes, Christopher Torres-Lugo, Kai-Cheng Yang, Filippo Menczer, John Bryden

Keywords: Social network analysis, communities identification, expertise and authority discovery, Trend identification and tracking, time series forecasting, New social media applications, interfaces, interaction techniques, Organizational and group behavior mediate

Abstract: With a substantial proportion of the population currently hesitant to take the COVID-19 vaccine, it is important that people have access to accurate information. However, there is a large amount of low-credibility information about vaccines spreading on social media. In this paper, we present the CoVaxxy dataset, a growing collection of English-language Twitter posts about COVID-19 vaccines. Using one week of data, we provide statistics regarding the numbers of tweets over time, the hashtags used, and the websites shared. We also illustrate how these data might be utilized by performing an analysis of the prevalence over time of high- and low-credibility sources, topic groups of hashtags, and geographical distributions. Additionally, we develop and present the CoVaxxy dashboard, allowing people to visualize the relationship between COVID-19 vaccine adoption and U.S. geo-located posts in our dataset. This dataset can be used to study the impact of online information on COVID-19 health outcomes (e.g., vaccine uptake) and our dashboard can help with exploration of the data.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICWSM 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers