02/02/2021

Consistent-Separable Feature Representation for Semantic Segmentation

Xingjian He, Jing Liu, Jun Fu, Xinxin Zhu, Jinqiao Wang, Hanqing Lu

Keywords:

Abstract: Cross-entropy loss combined with softmax is one of the most commonly used supervision components in most existing segmentation methods. The softmax loss is typically good at optimizing the inter-class difference, but not good at reducing the intra-class variation, which can be suboptimal for semantic segmentation task. In this paper, we propose a Consistent-Separable Feature Representation Network to model the Consistent-Separable (C-S) features, which are intra-class consistent and inter-class separable, improving the discriminative power of the deep features. Specifically, we develop a Consistent-Separable Feature Learning Module to obtain C-S features through a new loss, called Class-Aware Consistency loss. This loss function is proposed to force the deep features to be consistent among the same class and apart between different classes. Moreover, we design an Adaptive feature Aggregation Module to fuse the C-S features and original features from backbone for the better semantic prediction. We show that compared with various baselines, the proposed method brings consistent performance improvement. Our proposed approach achieves state-of-the-art performance on Cityscapes (82.6% mIoU in test set), ADE20K (46.65% mIoU in validation set), COCO Stuff (41.3% mIoU in validation set) and PASCAL Context (55.9% mIoU in test set).

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948856
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers