02/02/2021

Context-Guided Adaptive Network for Efficient Human Pose Estimation

Lei Zhao, Jun Wen, Pengfei Wang, Nenggan Zheng

Keywords:

Abstract: Although recent work has achieved great progress in human pose estimation (HPE), most methods show limitations in either inference speed or accuracy. In this paper, we propose a fast and accurate end-to-end HPE method, which is specifically designed to overcome the commonly encountered jitter box, defective box and ambiguous box problems of box-based methods, e.g. Mask R-CNN. Concretely, 1) we propose the ROIGuider to aggregate box instance features from all feature levels under the guidance of global context instance information. Further, 2) the proposed Center Line Branch is equipped with a Dichotomy Extended Area algorithm to adaptively expand each instance box area, and Ambiguity Alleviation strategy to eliminate duplicated keypoints. Finally, 3) to achieve efficient multi-scale feature fusion and real-time inference, we design a novel Trapezoidal Network (TNet) backbone. Experimenting on the COCO dataset, our method achieves 68.1 AP at 25.4 fps, and outperforms Mask-RCNN by 8.9 AP at a similar speed. The competitive performance on the HPE and person instance segmentation tasks over the state-of-the-art models show the promise of the proposed method. The source code will be made available at https://github.com/zlcnup/CGANet.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38947805
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers