02/02/2021

Hierarchical Negative Binomial Factorization for Recommender Systems on Implicit Feedback

Li-Yen Kuo, Ming-Syan Chen

Keywords:

Abstract: When exposed to an item in a recommender system, a user may consume it (known as success exposure) or neglect it (known as failure exposure). The recently proposed methods that consider both success and failure exposure merely regard failure exposure as a constant prior, thus being capable of neither modeling various user behavior nor adapting to overdispersed data. In this paper, we propose a novel model, hierarchical negative binomial factorization, which models data dispersion via a hierarchical Bayesian structure, thus alleviating the effect of data overdispersion to help with performance gain for recommendation. Moreover, we factorize the dispersion of zero entries approximately into two low-rank matrices, thus reducing the updating time linear to the number of nonzero entries. The experiment shows that the proposed model outperforms state-of-the-art Poisson-based methods merely with a slight loss of inference speed.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948754
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers