02/02/2021

Learning to Recommend from Sparse Data via Generative User Feedback

Wenlin Wang

Keywords:

Abstract: Traditional collaborative filtering (CF) based recommender systems tend to perform poorly when the user-item interactions/ratings are highly scarce. To address this, we propose a learning framework that improves collaborative filtering with a synthetic feedback loop (CF-SFL) to simulate the user feedback. The proposed framework consists of a recommender and a virtual user. The recommender is formulated as a CF model, recommending items according to observed user preference. The virtual user estimates rewards from the recommended items and generates a feedback in addition to the observed user preference. The recommender connected with the virtual user constructs a closed loop, that recommends users with items and imitates the unobserved feedback of the users to the recommended items. The synthetic feedback is used to augment the observed user preference and improve recommendation results. Theoretically, such model design can be interpreted as inverse reinforcement learning, which can be learned effectively via rollout (simulation). Experimental results show that the proposed framework is able to enrich the learning of user preference and boost the performance of existing collaborative filtering methods on multiple datasets.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948703
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers