02/02/2021

Almost Envy-freeness, Envy-rank, and Nash Social Welfare Matchings

Alireza Farhadi, MohammadTaghi Hajiaghai, Mohamad Latifian, Masoud Seddighin, Hadi Yami

Keywords:

Abstract: Envy-freeness up to one good (EF1) and envy-freeness up to any good (EFX) are two well-known extensions of envy-freeness for the case of indivisible items. It is shown that EF1 can always be guaranteed for agents with subadditive valuations. In sharp contrast, it is unknown whether or not an EFX allocation always exists, even for four agents and additive valuations. In addition, the best approximation guarantee for EFX is (φ − 1) ≃ 0.61 by Amanitidis et al.. In order to find a middle ground to bridge this gap, in this paper we suggest another fairness criterion, namely envy-freeness up to a random good or EFR, which is weaker than EFX, yet stronger than EF1. For this notion, we provide a polynomial-time 0.73-approximation allocation algorithm. For our algorithm we introduce Nash Social Welfare Matching which makes a connection between Nash Social Welfare and envy freeness.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948854
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers