02/02/2021

Differentiable Fluids with Solid Coupling for Learning and Control

Tetsuya Takahashi, Junbang Liang, Yi-Ling Qiao, Ming C. Lin

Keywords:

Abstract: We introduce an efficient differentiable fluid simulator that can be integrated with deep neural networks as a part of layers for learning dynamics and solving control problems. It offers the capability to handle one-way coupling of fluids with rigid objects using a variational principle that naturally enforces necessary boundary conditions at the fluid-solid interface with sub-grid details. This simulator utilizes the adjoint method to efficiently compute the gradient for multiple time steps of fluid simulation with user defined objective functions. We demonstrate the effectiveness of our method for solving inverse and control problems on fluids with one-way coupled solids. Our method outperforms the previous gradient computations, state-of-the-art derivative-free optimization, and model-free reinforcement learning techniques by at least one order of magnitude.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949205
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers